Molecular Identification and Selection of Probiotic Strains able to Reduce the Serum TMAO Level in Mice Challenged with Choline
Trimethylamine oxide (TMAO) originates from trimethylamine (TMA), which is oxidized in the liver by hepatic flavin-containing monooxygenases (FMO3). TMA is produced by its dietary precursors such as choline, carnitine, and phosphatidylcholine by gut microbiota. TMAO attracts attention, identified as a novel and independent risk factor for promoting obesity, atherosclerosis and cardiovascular disease (CVD), chronic kidney disease (CKD), insulin tolerance, and colon cancer.
Probiotics have been considered as live microorganisms, providing benefits to their host when they are given in sufficient quantities and administered continuously. The objective of this study is to suggest a method to select potential probiotic strains to reduce the serum concentration of TMAO in mice fed with choline. In this work, we chose three lactobacilli with strong adherence capability, and fed multistrain formula (MF) to the mice challenged with choline. On days 7, 14, and day 28, it was found that the MF-containing L. amylovorus LAM1345, Lpb. plantarum LP1145, and Lim. fermentum LF33 showed a significant reduction in serum TMAO and TMA levels. For the single strains, LP1145 reduced TMAO on days 14 and 28, and strain LAM1345 reduced TMAO significantly on days 7 and day 14. For strain LF1143 from strain LF33, it showed no significant effect on TMAO and TMA.
Thus, MF showed the best effect, which may be due to the additive and synergetic effect and the contribution of strain LP1145 and LAM1345. Finally, for the LAM1345 and LP1145 strains, we used molecular identification and typing methods to assure that these two strains are unique strains. The methods used for LAM 1345 were leader peptidase A (lepA) gene analysis and phylogenetic analysis, while for strain LP 1145and other strains of Lpb. plantarum subsp. plantarum sequences were compared using the whole-genome multilocus sequence typing (wgMLST) method.
For more informations:
Published 27 November 2021
Foods 2021, 10(12), 2931; DOI: https://doi.org/10.3390/foods10122931
Latest articles
- ÖKOLOGIE UND GLEICHGEWICHT DER MIKROBIOTA
- KENNST DU DEINE MIKROBEN: LOKALISATION, VERTEILUNG UND EIGENSCHAFTEN
- DER LEBENSKREISLAUF DER MIKROBIOTA
- DIE MIKROBIOTA EFFIZIENT ERNÄHREN
- DAS KONZEPT DER “ARTSPEZIFITÄT”
- NICHT NUR INTESTINALE MIKROBIOTA: DIE BEDEUTUNG DER KÖRPERACHSEN
- DIE INTESTINALE MICROBIOTA
- Gattung, familien und stämmen
- Die Geschichte der Mikrobiota
- Bakterien und Mikronährstoffe